16 research outputs found

    Context Protecting Privacy Preservation in Ubiquitous Computing

    Full text link
    In ubiquitous computing domain context awareness is an important issue. So, in ubiquitous computing, mere protection of message confidentiality is not sufficient for most of the applications where context-awareness can lead to near deterministic ideas. An adversary might deduce sensitive information by observing the contextual data, which when correlated with prior information about the people and the physical locations that are being monitored by a set of sensors can reveal most of the sensitive information. So, it is obvious that for security and privacy preservation in ubiquitous computing context protection is of equal importance. In this paper, we propose a scheme which provides two layer privacy protection of user's or application's context data. Our proposed context protecting privacy preservation scheme focuses on protecting spatial and temporal contextual information. We consider the communication part of ubiquitous computing consists of tiny sensor nodes forming Wireless Sensor Networks (WSNs). Through simulation we show the efficacy of our scheme. We also demonstrate the capability of our scheme to overcome the constraints of WSNs.Comment: 6 pages, 7 Figures, IEEE CISIM 201

    Security and Privacy in Wireless Sensor Networks

    Get PDF

    Knowledge-driven analytics and systems impacting human quality of life

    Get PDF
    The advent of artificial intelligence (AI), Internet of Things (IoT), powerful computational hardwares like graphics processing units, affordable sensing devices like smart bands, wearables, smartphones pave ways for large number of useful and intelligent applications hitherto never commonly envisaged. However, it is felt that applications, which positively influence human life and society, need distinct attention from the perspective of the researchers, application developers as well as industry. It is understood that knowledge-driven initiatives in terms of technology, application and practical deployment have strong capability to enable long term human-centric convergence of cyber-physical systems. Our endeavor is to discuss those finer details, research directions and application development aspects of analytics and systems intended for impacting human quality of life

    Aprendizaje computacional para an谩lisis de se帽ales de sensores

    No full text
    Objetivo: el objetivo general es construir modelos precisos de aprendizaje autom谩tico para resolver desaf铆os pr谩cticos como la escasez de datos de entrenamiento, la construcci贸n de modelos compactos y la preservaci贸n de la privacidad de los datos para un conjunto diverso de tareas de an谩lisis de se帽ales de sensores. Con la proliferaci贸n de Internet de las cosas (IoT), los avances de las tecnolog铆as de detecci贸n, las incre铆bles mejoras hacia el poder de c贸mputo junto con el progreso sobresaliente de los algoritmos y herramientas de inteligencia artificial, los investigadores est谩n encontrando nuevas v铆as para crear diferentes aplicaciones 煤tiles y direcciones de investigaci贸n novedosas. El trabajo de investigaci贸n se centra en la construcci贸n de modelos para el aprendizaje computacional de tareas de an谩lisis que involucran diferentes tipos de se帽ales de sensores de sensores como electrocardiograma, fonocardiograma, aceler贸metro, medidor de energ铆a, etc. Muchos sensores pueden considerarse como la micro-representaci贸n de la fisiolog铆a humana y la actividad humana y tales sensores contienen informaci贸n sensible. Por lo tanto, nuestra tarea principal es la habilitaci贸n de t茅cnicas de preservaci贸n de la privacidad como parte de los modelos de detecci贸n computacional que analizan las se帽ales de los sensores e infieren decisiones cr铆ticas. Metodolog铆a : se entiende que la atenci贸n m茅dica remota es una de las aplicaciones cr铆ticas de IoT y resolvemos el problema de la protecci贸n de la privacidad de los datos al proponer la eliminaci贸n del riesgo de la gesti贸n de datos confidenciales mediante la privacidad diferencial, donde la protecci贸n de privacidad controlada habilitada por el usuario en datos de atenci贸n m茅dica confidenciales puede ser empleado. El m茅todo de protecci贸n de la privacidad propuesto ofusca los datos confidenciales para garantizar que se realice una protecci贸n adecuada mientras que la utilidad no se ve gravemente comprometida, y el control de la habilitaci贸n de la privacidad est谩 dirigido por el usuario. La limitaci贸n de este trabajo es que el algoritmo de aprendizaje autom谩tico que realiza la tarea de an谩lisis requiere una ingenier铆a de funciones artesanal, que no solo restringe la escalabilidad del aprendizaje computacional, sino que tambi茅n depende del costoso proceso de generaci贸n de funciones asistida por expertos o conocimiento del dominio. y selecci贸n. Desarrollamos detecci贸n integrada de inteligencia que realiza tareas de clasificaci贸n supervisadas utilizando un m茅todo novedoso de aprendizaje profundo (DL) de red neuronal convolucional ajustada por hiperpar谩metros sin esfuerzos de ingenier铆a de requisitos. Ampliamos nuestra investigaci贸n para abordar el problema integral de la escasez de datos de entrenamiento en la generaci贸n de modelos DL. Se sabe que los modelos DL exigen ejemplos de entrenamiento sustanciales para la construcci贸n confiable del modelo computacional. Las tareas pr谩cticas de an谩lisis de se帽ales de sensores a menudo se proporcionan con un n煤mero limitado de ejemplos de capacitaci贸n, principalmente debido a los costos asociados con la anotaci贸n de expertos. Proponemos un m茅todo novedoso de aprendizaje efectivo bajo la limitaci贸n de datos de entrenamiento utilizando el descubrimiento atribuido por Shapley de un subconjunto de entradas que influyen positivamente para construir un modelo DL efectivo basado en redes residuales. Resultados : nuestro novedoso m茅todo de preservaci贸n de la privacidad propone el principio de incertidumbre de los datos del sensor, de modo que se emplea la incertidumbre estad铆stica controlada para la informaci贸n confidencial usando como definici贸n de protecci贸n de la privacidad que las probabilidades a priori y a posteriori de encontrar informaci贸n privada no cambian m谩s all谩 de un umbral predefinido y la ganancia del adversario en el acceso a datos confidenciales se vuelva insignificante. La estimaci贸n de hiperpar谩metros propuesta a partir de las caracter铆sticas de la se帽al de entrada facilita la construcci贸n del modelo CNN compacto y demostramos que el modelo propuesto supera constantemente los algoritmos de 煤ltima generaci贸n relevantes para la tarea de aprendizaje computacional dada de detecci贸n de condiciones de fibrilaci贸n auricular a partir de registros de ECG de una sola derivaci贸n. Con la novedosa arquitectura push-pull DL propuesta, donde la selecci贸n del subconjunto de entrada a trav茅s de la atribuci贸n del valor de Shapley empuja el modelo a una dimensi贸n m谩s baja mientras que el entrenamiento adversario aumenta la capacidad de aprendizaje del modelo sobre datos no vistos, demostramos un rendimiento superior a algoritmos actuales de 煤ltima generaci贸n para tareas de clasificaci贸n sobre diversos conjuntos de se帽ales de sensores de series temporales. Conclusi贸n : hemos propuesto un marco hol铆stico para resolver los desaf铆os pr谩cticos y de investigaci贸n del an谩lisis computacional de las se帽ales de los sensores, incluida la preservaci贸n de la privacidad de los datos, el algoritmo de aprendizaje profundo para la generaci贸n de modelos compactos, el modelo computacional efectivo bajo el problema de la escasez de datos de entrenamiento. En resumen, el trabajo de investigaci贸n proporciona un enfoque unificado para desarrollar un an谩lisis computacional pr谩ctico para diversos conjuntos de datos de sensores.Objective- The general objective is to build accurate machine learning models to solve practical challenges like training data scarcity, compact model construction and data privacy preservation for diverse set of sensor signal analysis tasks. With the proliferation of Internet of Things (IoT), advancements of sensing technologies, incredible enhancements towards computing power along with the outstanding progress of Artificial Intelligence algorithms and tools, researchers are finding new avenues to build different useful applications and novel research directions. The research work focuses on the construction of models for computational learning of analysis tasks involving different types of sensor signals from sensors like Electrocardiogram, Phonocardiogram, accelerometer, energy meter etc. In general, we can consider sensors as the micro-representation of our ambient world. Given that sensors capture near-human information, they usually contain sensitive data. Hence, our foremost task is the enablement of privacy preserving techniques as part of the computational sensing models that analyze the sensor signals and infer critical decision. Methodology- It is understood that remote healthcare is one of the critical applications of IoT and we solve the problem of data privacy protection by proposing de-risking of sensitive data management using differential privacy, where user-enabled controlled privacy protection on sensitive healthcare data can be employed. We propose a novel data privacy preservation method that obfuscates the sensitive component of the sensor data while utility is not severely compromised, while user controls the quantum of privacy. The proposed machine learning algorithm requires subtly hand-crafted feature engineering, which not only restricts the scalability of the computational learning, but also depends on the expensive process of expert or domain-knowledge aided feature generation and selection. We develop intelligence-embedded sensing that does supervised classification tasks using novel deep learning (DL) method of hyperparameter-adjusted convolutional neural network without feature engineering efforts. We extend research to address the integral problem of training data scarcity in DL model generation. It is known that DL models demand substantial training examples for reliable construction of the computational model. Practical sensor signal analysis tasks are often provided with limited number of training examples mainly due to the costs associated with expert annotation. We propose a novel method of effective learning under training data limitation using Shapley-attributed discovery of subset of positively influencing inputs to construct an effective Residual network-based DL model. Results- Our novel privacy preserving method proposes sensor data uncertainty principle, such that controlled statistical uncertainty is employed to the sensitive information with the definition of privacy protection that the prior and posterior probabilities of finding private information does not change beyond a pre-defined threshold and the adversary's gain of sensitivity data access becomes insignificant. The proposed hyperparameter estimation from the input signal characteristics facilitates compact CNN model construction. We demonstrate that our model consistently performs superior over the relevant state-of-the-art algorithms for the given computational learning task of Atrial Fibrillation condition detection from single-lead ECG recordings. We propose an unique push-pull DL architecture, where, firstly Shapley value attributed input subset selection pushes the model parameters towards lower dimension and subsequently, we augment the learnability of the model through adversarial training. We demonstrate the efficacy of proposed model that empirically outperforms the current state-of-the-art algorithms in diverse set of time series sensor signal classification tasks. Conclusion- We have proposed a holistic framework to solve the practical and research challenges of computational analysis of sensor signals including the data privacy preservation, deep learning algorithm for compact model generation, effective computational model under training data scarcity issue. In summary, the research work provides a unified approach to develop practical computational analysis for diverse set of sensor data

    Data-driven automated cardiac health management with robust edge analytics and de-risking

    No full text
    Remote and automated healthcare management has shown the prospective to significantly impact the future of human prognosis rate. Internet of Things (IoT) enables the development and implementation ecosystem to cater the need of large number of relevant stakeholders. In this paper, we consider the cardiac health management system to demonstrate that data-driven techniques produce substantial performance merits in terms of clinical efficacy by employing robust machine learning methods with relevant and selected signal processing features. We consider phonocardiogram (PCG) or heart sound as the exemplary physiological signal. PCG carries substantial cardiac health signature to establish our claim of data-centric superior clinical utility. Our method demonstrates close to 85% accuracy on publicly available MIT-Physionet PCG datasets and outperform relevant state-of-the-art algorithm. Due to its simpler computational architecture of shallow classifier with just three features, the proposed analytics method is performed at edge gateway. However, it is to be noted that healthcare analytics deal with number of sensitive data and subsequent inferences, which need privacy protection. Additionally, the problem of healthcare data privacy prevention is addressed by de-risking of sensitive data management using differential privacy, such that controlled privacy protection on sensitive healthcare data can be enabled. When a user sets for privacy protection, appropriate privacy preservation is guaranteed for defense against privacy-breaching knowledge mining attacks. In this era of IoT and machine intelligence, this work is of practical importance, which enables on-demand automated screening of cardiac health under minimizing the privacy breaching risk
    corecore